The statistics.quantiles
function in Python's statistics
module calculates the quantiles for a given dataset. Quantiles are points taken at regular intervals from the cumulative distribution function (CDF) of a random variable, dividing the range into continuous intervals with equal probabilities.
Table of Contents
- Introduction
statistics.quantiles
Function Syntax- Examples
- Basic Usage
- Calculating Quartiles
- Calculating Quintiles
- Calculating Deciles
- Real-World Use Case
- Conclusion
Introduction
The statistics.quantiles
function is part of the statistics
module, which provides functions for mathematical statistics of numeric data. Quantiles are useful for understanding the distribution and spread of data.
statistics.quantiles Function Syntax
Here's how you use the statistics.quantiles
function:
import statistics
quantiles_values = statistics.quantiles(data, n=4, method='inclusive')
Parameters:
data
: A sequence or iterable of numeric data (list, tuple, etc.).n
: The number of intervals to divide the data into. Default is 4 (quartiles).method
: The method used to compute the quantiles. Options are 'exclusive' and 'inclusive'. Default is 'exclusive'.
Returns:
- A list of quantiles.
Raises:
StatisticsError
: Ifdata
is empty or if there are not enough data points to calculate the quantiles.
Examples
Basic Usage
Calculate the quantiles of a list of numbers.
import statistics
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
quantiles_values = statistics.quantiles(data)
print(f"Quantiles: {quantiles_values}")
Output:
Quantiles: [2.75, 5.5, 8.25]
Calculating Quartiles
Calculate the quartiles (4 intervals) of a list of numbers.
import statistics
data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
quartiles = statistics.quantiles(data, n=4)
print(f"Quartiles: {quartiles}")
Output:
Quartiles: [27.5, 55.0, 82.5]
Calculating Quintiles
Calculate the quintiles (5 intervals) of a list of numbers.
import statistics
data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
quintiles = statistics.quantiles(data, n=5)
print(f"Quintiles: {quintiles}")
Output:
Quintiles: [22.0, 44.0, 66.0, 88.0]
Calculating Deciles
Calculate the deciles (10 intervals) of a list of numbers.
import statistics
data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
deciles = statistics.quantiles(data, n=10)
print(f"Deciles: {deciles}")
Output:
Deciles: [11.0, 22.0, 33.0, 44.0, 55.0, 66.0, 77.0, 88.0, 99.0]
Real-World Use Case
Calculating Income Distribution
Calculate the quintiles of income data to understand the income distribution in a dataset.
import statistics
incomes = [25000, 27000, 24000, 26000, 30000, 28000, 29000, 31000, 22000, 23000, 25000, 27000]
income_quintiles = statistics.quantiles(incomes, n=5)
print(f"Income Quintiles: {income_quintiles}")
Output:
Income Quintiles: [23600.0, 25200.0, 27000.0, 29400.0]
Conclusion
The statistics.quantiles
function is used for calculating quantiles in a dataset in Python. It helps in understanding the distribution and spread of data by dividing it into equal intervals. This function is beneficial in various fields, such as finance, economics, and social sciences, where data distribution analysis is essential.
Comments
Post a Comment
Leave Comment