The functools.wraps
function in Python's functools
module is a decorator that updates the wrapper function to look more like the wrapped function. This is particularly useful when writing decorators, as it helps preserve the metadata of the original function.
Table of Contents
- Introduction
functools.wraps
Function Syntax- Examples
- Basic Usage
- Using with a Simple Decorator
- Customizing Attributes
- Real-World Use Case
- Conclusion
Introduction
When creating decorators, the metadata of the original function (such as its name, docstring, and module) is often lost. The functools.wraps
decorator helps copy these attributes from the original function to the wrapper function, making debugging and introspection easier.
functools.wraps Function Syntax
Here is how you use the functools.wraps
function:
import functools
@functools.wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES)
def wrapper_decorator(wrapper):
# Wrapper implementation
pass
Parameters:
wrapped
: The original function.assigned
: Optional. A tuple specifying which attributes of the original function are assigned directly to the wrapper function (default isfunctools.WRAPPER_ASSIGNMENTS
which includes__module__
,__name__
,__qualname__
,__annotations__
, and__doc__
).updated
: Optional. A tuple specifying which attributes of the wrapper function are updated with the corresponding attributes from the original function (default isfunctools.WRAPPER_UPDATES
which includes__dict__
).
Returns:
- A decorator that updates the wrapper function with the metadata of the wrapped function.
Examples
Basic Usage
Update a simple wrapper function to preserve the metadata of the original function.
Example
import functools
def my_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print("Wrapper function")
return func(*args, **kwargs)
return wrapper
@my_decorator
def my_function():
"""This is my function."""
print("Original function")
print(my_function.__name__) # Output: my_function
print(my_function.__doc__) # Output: This is my function.
Using with a Simple Decorator
Create a decorator that uses functools.wraps
to preserve the metadata of the decorated function.
Example
import functools
def my_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print("Wrapper function")
return func(*args, **kwargs)
return wrapper
@my_decorator
def my_function():
"""This is my function."""
print("Original function")
print(my_function.__name__) # Output: my_function
print(my_function.__doc__) # Output: This is my function.
Customizing Attributes
Customize which attributes are updated by wraps
.
Example
import functools
def my_decorator(func):
@functools.wraps(func, assigned=('__doc__',))
def wrapper(*args, **kwargs):
print("Wrapper function")
return func(*args, **kwargs)
return wrapper
@my_decorator
def my_function():
"""This is my function."""
print("Original function")
print(my_function.__name__) # Output: wrapper
print(my_function.__doc__) # Output: This is my function.
Real-World Use Case
Timing Decorator
Create a timing decorator that preserves the metadata of the decorated function.
Example
import functools
import time
def timing_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Execution time: {end_time - start_time} seconds")
return result
return wrapper
@timing_decorator
def compute(x, y):
"""Compute the sum of x and y."""
time.sleep(1)
return x + y
print(compute(2, 3)) # Output: Execution time: 1.0 seconds
# 5
print(compute.__name__) # Output: compute
print(compute.__doc__) # Output: Compute the sum of x and y.
Conclusion
The functools.wraps
function is used for creating decorators that preserve the metadata of the original function. It helps maintain the integrity of function attributes such as the name, docstring, and module, which is important for debugging and introspection. Proper usage can enhance the readability and maintainability of decorated functions.
Comments
Post a Comment
Leave Comment