# 1. Introduction

In this tutorial, we will learn how to implement a simple Binary Search Tree data structure using Kotlin programming language.

A Binary Search Tree (BST) is a binary tree where each node has a comparable value, and the left subtree of a node contains only nodes with values less than the node's value, while the right subtree only nodes with values greater than the node's value. This property ensures that operations like insert, delete, and find can be performed efficiently.

# 2. Implementation Steps

1. Define a Node class to represent individual nodes in the BST.

2. Create a BinarySearchTree class that will provide methods for common operations.

3. Implement methods such as insert, search, delete, findMin, findMax, inOrderTraversal, preOrderTraversal, and postOrderTraversal.

# 3. Implementation in Kotlin Programming

// Define the Node class
class Node(var data: Int) {
var left: Node? = null
var right: Node? = null
}

class BinarySearchTree {
var root: Node? = null

// Insert data into the BST
fun insert(value: Int) {
root = insertRecursive(root, value)
}

private fun insertRecursive(current: Node?, value: Int): Node {
if (current == null) {
return Node(value)
}
if (value < current.data) {
current.left = insertRecursive(current.left, value)
} else if (value > current.data) {
current.right = insertRecursive(current.right, value)
}
return current
}

// Search for a value in the tree
fun search(value: Int): Boolean {
return searchRecursive(root, value)
}

private fun searchRecursive(current: Node?, value: Int): Boolean {
if (current == null) {
return false
}
if (value == current.data) {
return true
}
return if (value < current.data) {
searchRecursive(current.left, value)
} else {
searchRecursive(current.right, value)
}
}

// Delete a value from the tree
fun delete(value: Int) {
root = deleteRecursive(root, value)
}

private fun deleteRecursive(current: Node?, value: Int): Node? {
if (current == null) {
return null
}
if (value == current.data) {
if (current.left == null && current.right == null) {
return null
}
if (current.right == null) {
return current.left
}
if (current.left == null) {
return current.right
}
val smallestValue = findSmallestValue(current.right!!)
current.data = smallestValue
current.right = deleteRecursive(current.right, smallestValue)
return current
}
if (value < current.data) {
current.left = deleteRecursive(current.left, value)
return current
}
current.right = deleteRecursive(current.right, value)
return current
}

private fun findSmallestValue(root: Node): Int {
return root.left?.let { findSmallestValue(it) } ?: root.data
}

// Find the minimum value in the tree
fun findMin(): Int? {
return findMinRecursive(root)
}

private fun findMinRecursive(node: Node?): Int? {
return node?.left?.let { findMinRecursive(it) } ?: node?.data
}

// Find the maximum value in the tree
fun findMax(): Int? {
return findMaxRecursive(root)
}

private fun findMaxRecursive(node: Node?): Int? {
return node?.right?.let { findMaxRecursive(it) } ?: node?.data
}

// Tree traversal methods
fun inOrderTraversal(node: Node?) {
if (node != null) {
inOrderTraversal(node.left)
println(node.data)
inOrderTraversal(node.right)
}
}

fun preOrderTraversal(node: Node?) {
if (node != null) {
println(node.data)
preOrderTraversal(node.left)
preOrderTraversal(node.right)
}
}

fun postOrderTraversal(node: Node?) {
if (node != null) {
postOrderTraversal(node.left)
postOrderTraversal(node.right)
println(node.data)
}
}
}

// Client code
fun main() {
val bst = BinarySearchTree()
bst.insert(50)
bst.insert(30)
bst.insert(70)
bst.insert(20)
bst.insert(40)
bst.insert(60)
bst.insert(80)
println("In-order traversal:")
bst.inOrderTraversal(bst.root)
println("\nPre-order traversal:")
bst.preOrderTraversal(bst.root)
println("\nPost-order traversal:")
bst.postOrderTraversal(bst.root)
println("\nSearch for 40: \${bst.search(40)}")
println("Search for 100: \${bst.search(100)}")
println("\nMinimum value: \${bst.findMin()}")
println("Maximum value: \${bst.findMax()}")
bst.delete(40)
println("\nAfter deleting 40:")
bst.inOrderTraversal(bst.root)
bst.delete(50)
println("\nAfter deleting 50:")
bst.inOrderTraversal(bst.root)
}

### Output:

In-order traversal:
20
30
40
50
60
70
80
Pre-order traversal:
50
30
20
40
70
60
80
Post-order traversal:
20
40
30
60
80
70
50
Search for 40: true
Search for 100: false
Minimum value: 20
Maximum value: 80
After deleting 40:
20
30
50
60
70
80
After deleting 50:
20
30
60
70
80

### Explanation:

1. A Binary Search Tree (BST) is a special form of binary tree where for every node, its left child nodes have values less than the node and its right child nodes have values greater than the node.

2. The Node class represents individual nodes of the BST, containing data, left child, and right child.

3. In the BST class:

- The insert method is used to add new nodes to the BST.

- The search method checks if a value is present in the BST.

- The delete method removes a node from the BST.

- The findMin and findMax methods retrieve the minimum and maximum values from the BST, respectively.

- Tree traversal methods (inOrderTraversal, preOrderTraversal, and postOrderTraversal) allow visiting the nodes in a specific order.

4. The client code demonstrates the usage of the BST, including insertion, traversal, search, and deletion operations.